Seeds of Hope

By Neha Khator | USAID| January 8, 2018


Improved seeds and better access to water have proved a winning combination for these Indian farmers.

Three spokes in his back wheel have almost come off, but farmer Kunwar Munda adjusts his feet and continues to cycle. Even as the breeze rushes through his hair, it is never enough to match the scorching sun. Trees and the ground have been burnt stony brown and dry.

After almost an hour of cycling, Munda arrives at a tented location in Mungadih village in Angara block in the eastern state of Jharkhand in India.

This is the third Kisan Mela (Farmer’s Fest) organized by USAID, the Centers for International Projects Trust (CIPT) and Birsa Agricultural University (BAU) under the Sustainable Agriculture and Farmers’ Livelihood (SAFAL) Program. Hundreds of farmers from across 15 villages have arrived here. Munda parks his cycle next to a large tree and joins a party of known faces from his village as a few hundred farmers continue to pour into the tent.

Among the arriving farmers is 22-year-old Sapna Devi. Unlike Munda, she had to cross a forested mountain on foot to reach the event.

Farmers gathered under a tent to collect their bags of high-yielding rice seeds. / Neha Khator, USAID

The farmers wait in anticipation before officials from the USAID-supported SAFAL project began distributing 1,200 bags of high-yielding rice seeds to the hundreds of farmers that have congregated.

As names are called one-by-one, farmers queue to get their bags, each containing five kilograms of high-yielding rice seeds.

Farmer Kunwar Munda smiles after collecting his bag of rice seeds. / Neha Khator, USAID

As Munda collects his bag and rejoins his group, his face beams with a smile that’s unstoppable.

“I have heard so much about these seeds. Farmers in villages near mine have doubled their crop production since they got these. And even the drought last year did not affect them. It is my turn now,” he says.

Munda, like every farmer in Jharkhand, is trapped in a vicious and complex agricultural quagmire.

The state has a mountain topography, which means that the land here is rocky, uneven and less fertile.

“Out of the state’s entire land mass, only 35 percent is cultivable land,” explains Kamal Vatta, director of CIPT. “And even though Jharkhand receives monsoon rains twice the national average, the state’s [sloping] geography means that 90 percent of the rainwater quickly washes away, leaving the farmers distressed with severe water shortage and periodic droughts.”

To compound these problems, farmers here grow a traditional, low-productive rice variety using farming methods passed on to them through generations. And, like most farmers here, Munda owns only a small plot of land. His father upon his death divided his one acre of farmland among Munda and his four brothers, leaving only one-fifth of the land each to cultivate. As a result, Munda barely produces enough to feed his family beyond six months.

To break this cycle of extreme poverty and food insecurity, USAID organized the first Farmer’s Fest in June 2015. Through this project, 730 farming families were selected from across 10 villages to receive high-yielding rice seeds along with training in modern sowing and farming methods.

Farmer Sapna Devi after receiving her bag of rice seeds. Through this USAID project, 730 farming families were selected to receive high-yielding rice seeds and training in modern farming methods. / Neha Khator, USAID

But seeds alone couldn’t do the magic.

“In India, farming is still rain-fed and rain-dependent. To cultivate a good crop, farmers need assured access to water during the months of shortage. That is why we began building dobhas or small ponds,” says Vatta.

Adobha is a low-cost rainwater harvesting technique where a 10-by-10 foot pit is dug to trap the rainwater.

“Under the SAFAL project, CIPT and agriculture scientists from Birsa University used geospatial mapping to carefully identify rain and water stream patterns to build the dobhas in strategic locations. In the first year, we built 20 such dobhas — two each in the 10 selected villages,” adds Vatta. The farmers then draw the required amount of water from the dobha using a pipe powered by a pump.

The dobha built near farmer Sukhram Bediya’s farm / Neha Khator, USAID

Farmer Sukhram Bediya from Mungadih village proudly shows the dobha built an arms-length from his less than 1-acre farmland. Whereas before he was producing barely 150 to 200 kilograms of rice a year, after utilizing the higher-yielding rice seeds and dobha irrigation technique, his production shot up to 450 kilograms in only a year.

“After I harvested the rice, the project staff provided me vegetable seeds which again turned out very well. I sold the vegetables in the nearby weekly bazaar, and now I earn an average Rs. 1,000 ($16) every week just by selling vegetables,” says Bediya.

Currently, lush green colocasia leaves (cultivated for its nutritious leaves and root) and ripened tomatoes cover his field. These will soon be cleared to be sold at the weekly bazaar and will make way for his next rice crop.

Farmer Sukhram Bediya shows his field. / Neha Khator, USAID

“In the last two years, I have never left my fields empty. I’m producing something throughout the year now,” says Bediya, a new gold-coloured watch reflecting the sun as he smooths his crisp, light-blue shirt with his hands.

With rising farm production came rising incomes, and farmers like Bediya and Bharat Ram, who is from a nearby village, owe their newfound prosperity to the seeds and dobhas backed by USAID.

Bharat Ram’s daughter had just passed her Grade 10 exams the year he made Rs. 15,000 ($244) by selling a bumper cucumber harvest. “From that money, I paid Rs. 5,000 ($77) for her admission fees to enrol her into the Women’s College in Ranchi (the state capital).” Adds Ram with a tone of disbelief: “Who would’ve thought that cucumbers could one day pay for my daughter’s education.”

As these stories of transformed livelihoods travelled across villages far and wide, farmers like Munda and Sapna Devi began joining the SAFAL project. Like Bharat Ram, Munda too wants to send his sons to study in a private school in the city. “They are talented, bright boys and I know they’ll do well for themselves if they get the right education,” says Munda.

In the last two years, the project has built 320 dobhas in 30 villages in the Angara block alone and has enrolled over 2,100 farmers, providing them with access to water and seeds of hope.

The project has been so successful that the local state government has taken notice and plans to drastically ramp up dobha construction going forward.

“Based on the success of our program, the Jharkhand state government has now committed to constructing 500,000 dobhas across the state by 2022, collectively saving 12.5 million cubic meters of rainwater,” says Vatta. The Jharkhand state government’s efforts support the Indian Prime Minister’s flagship national goal of providing “water to every farm” and doubling farmers’ incomes and productivity.

Farmer Sapna Devi, though, has simpler dreams. With the increased farm income, she hopes to buy herself a red saree. “It would look good on me, right?” she asks. “Oh yes, you’ll look very pretty,” giggle her friends from behind.


About the Author

Neha Khator is a development and outreach communications specialist with USAID’s mission in India.


Article Disclaimer: This article was published by USAID Frontlines and retrieved on 01/09/2017 and posted here for information and educational purposes only. The views and contents of the article remain those of the authors. We will not be held accountable for the reliability and accuracy of the materials. If you need additional information on the published contents and materials, please contact the original authors and publisher. Please cite the authors, original source, and INDESEEM accordingly.


Welcoming Alena Kalodzitsa

Please allow me to introduce Ms. Alena Kalodzitsa.  Alena has decided to come on board as one of our Technical Specialists in the capacity of the Economic Development & Social Policy Specialist. In this role, Alena will work with Mrs. Chantal Kassa, Director of Operations & Strategic Partnerships in which she will facilitate our organization with the functional knowledge of the United Nations Systems specifically the United Nations Economic and Social Council and its specialized agencies and partners and how we could leverage opportunities available for the advancement of our vision and mission.

Alena will also coordinate with others to provide expert recommendations, strategic priorities, interventions, research, and development outcomes to the corporate team, our development partners, and stakeholders as the need arise. She will work with the corporate team to conduct research to formulate strategic plans to address economic and social problems related to the production and distribution of resources across all our impact areas to collaboratively achieve the United Nations Sustainable Development Goals by 2030 and beyond.

Alena holds a Master’s degree in Economics from the Eastern Illinois University and a Bachelor’s degree in International Business and Administration from Lithuanian Christian College located in Klaipeda, Lithuania. Her passion for economic development with emphasis on youth made her travel in more than twenty countries around the world where she has worked with various international youth organizations including the United Nations Youth AssemblyWorld Youth AllianceEuropean Youth Parliament, and the Nantucket Project.

Please join me to welcome Alena on board the team and have a wonderful holiday!

 

 

 

 

 

Smart fertilizer management and the quest for sustainable rice production


Pauline Chivenge and Sheetal Sharma   |  « PREVIOUS


Specific fertilizer recommendations in smallholder rice farming systems could increase crop production while reducing pollution and greenhouse gas emissions.

Rice production relies on the use of synthetic fertilizers, especially nitrogen, in order to meet the challenge of rising demand for the commodity driven by population growth. However, the nutrient needs of rice crops are not constant and can vary with fields, seasons, and years because of differences in crop-growing conditions and management. Consequently, the proper management of nutrients for rice production needs to be adjusted to suit field and crop requirements.

Furthermore, the application of external nutrients constitutes the second most expensive rice production input, after labor. As a result, nutrient management is an important component for sustainable rice production while protecting the environment.

Too much of a good thing
The Green Revolution in the mid-20th century resulted in increased crop yields, including rice, in the developing world. Much of this was due to a combination of the introduction of improved varieties and more reliance on the use of synthetic fertilizers, herbicides, and pesticides. However, although the Green Revolution was undoubtedly beneficial in improving food security, it was also associated with a dramatic increase in pollution due to the high use of agricultural chemicals.

Fertilizer recommendations in smallholder rice farming systems are often given as blanket recommendations, but this can lead to the overuse of fertilizers and inefficient use of nutrients. This created a need to find approaches to increase crop production while reducing pollution.

Location-specific information
Soil testing has been promoted to estimate location-specific fertilizer requirements based on the measurement of soil nutrient pools for a field or location. Soil-test methods attempt to measure the proportions of nutrients available for crops, but the amount measured may differ across soils with contrasting properties. Additionally, different tests for one nutrient often provide different results that can be expressed in a variety of ways.

Therefore, soil-test methods need to be calibrated to be used in a specific region. Soil testing requires rapid sequential sampling of soil, laboratory analysis, and timely deployment of a fertilizer recommendation with training for farmers before crop establishment. The effective implementation across hundreds of thousands of fields has been constrained by the high costs involved in sampling and analysis.

In developed countries, precision nutrient management is done using sophisticated technology to monitor variations in nutrient levels within large fields and across seasons. But, this is not applicable for small fields in Asia and Africa.

The site-specific nutrient management (SSNM) approach was developed in the 1990s to enable rice farmers to apply fertilizers and efficiently meet varying nutrient requirements of plants, thereby reducing fertilizer misuse associated with fertilizer subsidy.

The approach is used to calculate field-specific requirements for fertilizer nitrogen, phosphorus, and potassium for cereal crops based on scientific principles with the aim to increase nutrient-use efficiency. SSNM has improved rice yields compared with the farmers’ practice often based on blanket recommendations.

nmrice-smatphone
Nutrient Manager for Rice provides farmers in the Philippines with advice on best fertilizer through mobile phones. (Photo: IRRI)

Timing is everything
The SSNM approach, however, does not aim to increase or reduce the amount of fertilizer used. The increase in grain yield with lower amounts of fertilizer has been associated with the better timing of application, particularly for nitrogen. Farmers apply a greater proportion of the nitrogen fertilizer in the early stages of the crop, causing higher vigor during early growth, which does not translate into higher grain yield at maturity.

In recent years, SSNM has been identified as one of the options for sustainable intensification of rice production in Asia and as a climate-smart technology for increasing resource-use efficiency while reducing greenhouse gas emissions and nutrient runoff into water sources.

The SSNM approach relies heavily on information generated from nutrient omission plot trials that are used to estimate fertilizer requirements for major nutrients (nitrogen, phosphorus, and potassium). Briefly, nutrient omission plots are small field trials in which adequate nutrients—except the nutrient of interest—are applied to a plot in order to estimate the supply of the omitted nutrient from indigenous sources such as soil, crop residues, irrigation water, biological nitrogen fixation, and atmospheric deposition. This is used to calculate the amount of fertilizer required to achieve a given yield target.

Phosphorus and potassium are generally applied at sowing or transplanting while nitrogen is applied at different crop stages. Thirty percent of the nitrogen is applied at transplanting and the rest is equally split at critical rice growth stages: active tillering and panicle initiation. Alternatively, the nitrogen splits can be determined using leaf color charts.

Rice production in Asia is largely done by smallholder farmers who often lack access to information. For sustainability, there is a need to develop tools that are accessible to farmers. Using the principles of SSNM, an information and communication technology decision support tool, Nutrient Manager, was developed to give field-specific fertilizer recommendations for smallholder farmers.

Nutrient Manager targets irrigated and rainfed lowland rice farmers with the aim to increase productivity and net income by USD 100 per hectare per season at the farm level. The tool has been widely tested and used in the Philippines, India, Bangladesh, and Vietnam, and has led to an increase in farm productivity and profitability. The tool was later developed into the Rice Crop Manager in the Philippines and India, which give climate-informed agro-advisory services to farmers, including the selection of suitable varieties. (See An app tailor-made for India’s rice farmers.)

Although the tool has effectively improved productivity in 80% of the locations where it has been tried, there is room to expand the fertilizer recommendations for a wider set of conditions. Additionally, dissemination of the tool needs to be boosted to give more rice farmers access to smarter and more sustainable fertilizer management.
_______________________
Dr. Chivenge is a soils and biogeochemistry expert at the International Rice Research Institute (IRRI). Dr. Sharma leads IRRI’s research on the design, evaluation, and dissemination of soil and nutrient management technologies for the rice-based systems of South Asia.


Article Disclaimer: This article was published by the RICE Today and retrieved on 12/13/2017 and posted here for information and educational purposes only. The views and contents of the article remain those of the authors. We will not be held accountable for the reliability and accuracy of the materials. If you need additional information on the published contents and materials, please contact the original authors and publisher. Please cite the authors, original source, and INDESEEM Inc. accordingly.


Scaling up research for impact

29015859871_fe9121f348_z-1-345x230
Source: CIMMYT, 2017 – Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve. Photo: CIMMYT/P. Lowe

April 27, 2017

EL BATAN, Mexico (CIMMYT) – Agricultural innovations, like climate-resilient crops, sustainable land use practices, and farm mechanization options, can go a long way toward achieving several U.N. Sustainable Development Goals.

But ensuring research reaches a significant amount of farmers to have a widespread impact is challenging.

Projects, programs, and policies can often be like small pebbles thrown into a big pond. They are limited in scope, time bound and therefore might fail to have long lasting impact. Through well thought scaling up strategies, development practitioners expect to implement successful interventions and expand, adapt and sustain them in different ways over time for greater developmental impact.

“To have our knowledge and technologies positively impact the livelihoods of large numbers of farmers in maize and wheat-based systems is what matters most,” said Bruno Gérard, director of the Sustainable Intensification Program at the International Maize and Wheat Improvement Center (CIMMYT).

Understanding the needs and demands of our stakeholders is crucial in the design and implementation of a research portfolio, he added.

As part of a German Development Cooperation (GIZ) effort to aid the scaling up of agricultural innovations, Lennart Woltering recently joined CIMMYT’s Sustainable Intensification Program. With previous experience working in development in Africa and South Asia, Woltering will play a key role in linking CIMMYT’s research to specific development needs, increasing its relevance and impact.

There is no blueprint for scaling, it depends on the institutional and socio-economic environments, which are very diverse in the various regions where CIMMYT works, said Gérard. He hopes Woltering’s experience with both development and research organizations will further contribute to link the right technical innovations with the people who need them.

Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve, Woltering said. Understanding what the drivers are that make the widespread adoption happen is critical.

“We do this by making sure scaling processes are an integral part of innovation systems. It is important to understand how conducive environments for scaling can be facilitated and how far we can realistically go,” he added.

Woltering will work to provide a coherent approach to scaling that can be used across the program’s projects, said Gérard.

To see real impact from research, initiatives must move beyond the boundaries of a single organization, Woltering said. New forms of collaboration across different sectors and the opening of new communication channels to share lessons of success when scaling should emerge.

Woltering will develop scaling strategies to facilitate the adoption of sustainable intensification options such as conservation agriculture and water/nutrient efficient practices, and contribute to enhancing CIMMYT’s partnerships with public and private sectors.

Previously, Woltering worked as a civil engineer focusing on water management with the International Crops Research Institute for the Semi-Arid Tropics in Africa (ICRISAT), then later moved on to work for a consulting development firm in Germany.  His experience will allow him to better articulate development needs with CIMMYT’s research, increasing the relevance and impact of the organization’s work.

Woltering is one of five experts working at CIMMYT as part of the GIZ-sponsored CIM Integrated Experts program. The CIM program aims to strategically place managers and technical experts in public and private organizations in the developing world to pass on their professional knowledge and contribute to capacity building.


Article Disclaimer: This article was published by the CIMMYT 04/27/2017 and retrieved on 05/03/2017 and posted at INDESEEM for information and educational purposes only. The views and contents of the article remain those of the authors. We will not be held accountable for the reliability and accuracy of the materials. If you need additional information on the published contents and materials, please contact the original authors and publisher. Please cite the authors, original source, and INDESEEM accordingly.