Better farmer access to machinery eases crop residue burning in India


“Super SMS” fitted combine harvester and “Happy Seeder” can be used for simultaneously harvesting rice and seeding wheat. Photo: H.S. Sidhu/CIMMYT

November 14, 2017

EL BATAN, Mexico (CIMMYT) — In conjunction with recent state regulations outlawing the use of fire to destroy field crop waste in northwest India, some farmers are benefitting from technological innovations that can help prevent damaging smog levels in the capital Delhi and other areas, according to scientists.

Currently, the majority of farmers in northwest India burn leftover vegetation residue to prepare fields for planting in cyclical rice-wheat crop rotations, leading to negative consequences for soil quality, the environment, animal and human health. Rice-wheat crop rotations make up 84 percent of burned crops, a key source of atmospheric pollution.

“Farmers need access to appropriate machinery and training to implement change to discourage burning,” said M.L. Jat, a systems agronomist who works in New Delhi with the International Maize and Wheat Improvement Center (CIMMYT). “Using crop residue in a sustainable and eco-friendly manner could benefit all stakeholders.”

Many farmers keep costs low by burning residue on the farm, rather than paying for its removal for other uses, which could include animal feed, biofuel,  incorporating it into the soil or retaining it in the field as mulch, according to a research paper titled “Burning issues of paddy residue management in northwest fields of India.” Fire is also used to eliminate weeds, pests, disease and remaining field stubble after harvest.

Ash left on the fields after residue burning increases the availability of some nutrients, while depleting others and negatively affecting soil health in the long term. During burning, soil temperature increases, bacteria and fungi are killed off, regenerating in a matter of days. Residue burning can damage plants and trees on field edges with negative implications for the overall ecosystem.

Residues can be used as a renewable energy source to improve air, soil quality, climate change and reduce global warming, provided these are economically viable options for farmers. Incentives could also help encourage farmers to leave residues on their fields for use as fertilizer.

If residue is mulched into the soil, nutrient levels improve and carbon sequestration capacity increases, lowering the release of greenhouse gases into the environment. Additionally, residue retention reduces evaporation and increases soil moisture by as much as 10 percent during the wheat-growing season.

Farmers can benefit from the Happy Seeder, a machine that can plant wheat seed directly into the soil by boring through crop residue. The Straw Management System (SMS) machine spreads straw residue thinly on the soil surface allowing seeding.

“Residues are also of great economic value as livestock feed, fuel and industrial raw materials, but of the total rice residues produced in northwestern India, only around 15 percent can potentially be used for these purposes and the rest must be managed with in-situ (on site) management technologies,” said Jat, who conducted the research in collaboration with the CGIAR research programs on maize (CRP Maize), wheat(CRP Wheat) and climate change, agriculture and food security (CCAFS).

“Although farmers are aware of the adverse affects of crop burning, they rely on it due to the lack of economically viable and acceptable machinery and alternatives to dispose of residue.”

However, deploying advanced technology, including the concurrent use of straw management systems, fitted combine harvesters and Happy Seeders for direct drilling is a viable solution to eliminate burning, he added.

With these advancements and aggressive campaigns, within a period of a couple of months in Punjab state alone, over 1,000 combine owners have launched a “Super SMS.”

Additionally, nearly 2,000 happy seeders are being manufactured, which will lead to large-scale adoption of conservation agriculture techniques in the upcoming wheat season, Jat said.

Article Disclaimer: This article was published by the CIMMYT and retrieved on 11/24/2017 and posted here for information and educational purposes only. The views and contents of the article remain those of the authors. We will not be held accountable for the reliability and accuracy of the materials. If you need additional information on the published contents and materials, please contact the original authors and publisher. Please cite the authors, original source, and INDESEEM accordingly.


Climate insurance for farmers: a shield that boosts innovation


Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT

November 7, 2017

New insurance products geared towards smallholder farmers can help them recover their losses, and even encourage investment in climate-resilient innovations.

What stands between a smallholder farmer and a bag of climate-adapted seeds? In many cases, it’s the hesitation to take a risk. Farmers may want to use improved varieties, invest in new tools, or diversify what they grow, but they need reassurance that their investments and hard work will not be squandered.

Climate change already threatens crops and livestock; one unfortunately-timed dry spell or flash flood can mean losing everything. Today, innovative insurance products are tipping the balance in farmers’ favor. That’s why insurance is featured as one of 10 innovations for climate action in agriculturein a new report released ahead of next week’s UN Climate Talks. These innovations are drawn from decades of agricultural research for development by CGIAR and its partners and showcase an array of integrated solutions that can transform the food system.

Index insurance is making a difference to farmers at the frontlines of climate change. It is an essential building block for adapting our global food system and helping farmers thrive in a changing climate. Taken together with other innovations like stress-tolerant crop varietiesclimate-informed advisories for farmers, and creative business and financial models, index insurance shows tremendous promise.

The concept is simple. To start with, farmers who are covered can recoup their losses if (for example) rainfall or average yield falls above or below a pre-specified threshold or ‘index’. This is a leap forward compared to the costly and slow process of manually verifying the damage and loss in each farmer’s field. In India, scientists from the International Water Management Institute (IWMI) and the Indian Council of Agricultural Research(ICAR), have worked out the water level thresholds that could spell disaster for rice farmers if exceeded. Combining 35 years of observed rainfall and other data, with high-resolution satellite images of actual flooding, scientists and insurers can accurately gauge the extent of flooding and crop loss to quickly determine who gets payouts.

The core feature of index insurance is to offer a lifeline to farmers, so they can shield themselves from the very worst effects of climate change. But that’s not all. Together with my team, we’re investigating how insurance can help farmers adopt new and improved varieties. Scientists are very good at developing technologies but farmers are not always willing to make the leap. This is one of the most important challenges that we grapple with. What we’ve found has amazed us: buying insurance can help farmers overcome uncertainty and give them the confidence to invest in new innovations and approaches. This is critical for climate change adaptation. We’re also finding that creditors are more willing to lend to insured farmers and that insurance can stimulate entrepreneurship and innovation. Ultimately, insurance can help break poverty traps, by encouraging a transformation in farming.

Insurers at the cutting edge are making it easy for farmers to get coverage. In Kenya, insurance is being bundled into bags of maize seeds, in a scheme led by ACRE Africa. Farmers pay a small premium when buying the seeds and each bag contains a scratch card with a code, which farmers text to ACRE at the time of planting. This initiates coverage against drought for the next 21 days; participating farms are monitored using satellite imagery. If there are enough days without rain, a farmer gets paid instantly via their mobile phone.


ACRE makes it easy for Kenyan farmers to get insurance. Source

Farmers everywhere are business people who seek to increase yields and profits while minimizing risk and losses. As such, insurance has widespread appeal. We’ve seen successful initiatives grow rapidly in India, China, Zambia, Kenya and Mexico, which points to significant potential in other countries and contexts. The farmers most likely to benefit from index insurance are emergent and commercial farmers, as they are more likely than subsistence smallholder farmers to purchase insurance on a continual basis.

It’s time for more investment in index insurance and other innovations that can help farmers adapt to climate change. Countries have overwhelmingly prioritized climate actions in the agriculture sector, and sustained support is now needed to help them meet the goals set out in the Paris Climate Agreement.

Jon Hellin leads the project on weather index-based agricultural insurance as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). This work is done in collaboration with the International Research Institute for Climate and Society (IRI) at Columbia University, and the CGIAR Research Programs on MAIZE and WHEAT.

Article Disclaimer: This article was published by CIMMYT and retrieved on 11/10/2017 and posted here for information and educational purposes only. The views and contents of the article remain those of the original authors and publisher. We will not be held accountable for the reliability, accuracy, and validity of the published materials. If you need additional information about the contents and materials of the article, please contact the original authors and publisher. INDESEEM is an emerging nonprofit, research and development organization which seeks to enhance development partnerships in developing countries to achieve the sustainable development goals by 2030 and beyond. Please cite article accordingly. Thank You.


Agricultural scientists urge new global crop alliance to secure future food supply


Farmer Gashu Lema’s son harvests improved variety “Kubsa” wheat

EL BATAN, Mexico (CIMMYT) – At a time when weather patterns are becoming less predictable and population pressures on food supply are increasing, a group of crop scientists are laying the groundwork for an international crop network to systematically tackle threats to global food security.

Research focused on specific crops achieves progressive genetic gains, but scientists need to adopt a more internationally oriented and integrated approach to leverage technology, expertise and infrastructure with greater efficiency and purpose, said Matthew Reynolds, a distinguished scientist and wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) in an opinion piece published this week in the journal Science.

Already 795 million poor people do not get enough food to eat, according to the U.N. Food and Agriculture Organization (FAO). By 2030, the number of people living in poverty could increase between 35 and 122 million in large measure because of the impact of climate change on the agricultural sector, the FAO reports.

“We understand how to make crops more resilient to heat and drought, but we’re at a point where we need to accelerate our work.” said Reynolds, backed by a team of co-authors from the scientific community. “Since these problems are transnational in nature, a more global network could accelerate our efforts while increasing efficiency and helping to avoid duplication.”

Scientists plan to deploy the new Global Crop Improvement Network (GCIN) to take comparative approaches across all major crops and environments to enhance such traits as root access to water using remote sensing, which often requires costly mobile, airborne or satellite technology.

Through successful wheat-specific collaboration, since the early 1960s, the International Wheat Improvement Network (IWIN), part of the CGIAR-affiliated group of agricultural researchers, has made economically efficient and environmentally sound impacts in crop improvement, which serve as a template for the projected success of GCIN.

Scientists within IWIN undertake breeding efforts aimed at 12 different wheat mega-environments, testing new wheat genotypes at 700 field sites in more than 90 countries. Each year they produce some 1,000 high-yielding, disease-resistant wheat lines, which are delivered as international public goods.

A recent study on wheat improvement shows that CGIAR varieties cover about half of the world’s wheat growing area, through IWIN, delivering an economic punch of from $2.2 billion to more than $3 billion a year for resource-poor farmers and consumers.

“The benefit cost ratio of the investment is 100 to 1, even without taking into account the avoided cost of disease pandemics and the land saved from cultivation due to increased yields; economic analysis indicate at least 20 million hectares of natural ecosystem have been spared the plough,” Reynolds said.

“High transaction costs and instability of crop funding have hamstrung urgently needed research,” he added. “This is senseless in light of the extraordinary return on investment to IWIN which could be transferred to GCIN.”

Through a crop-wide collaboration, international scientists can boost benefits from practical work with national agricultural research systems, improving the value of “in kind contributions,” he said.

Aims include standardizing data and phenotyping techniques to best practises, ensuring that information can be shared and understood worldwide.

This approach will also encourage upstream researchers to venture from working exclusively in controlled facilities to realistic field environments, bringing cutting edge technologies with them, Reynolds said.

Data sharing could lead to more accurate descriptions of environments and experimental treatments. Currently, data is often only available selectively and a network would promote it through open access programs.

The benefits of integrated research through the CGIAR group of agricultural researchers and the FAO are well established, but the network under discussion could enhance and improve information sharing transnationally.

Experimental fields – or field laboratories – which are essential for translating scientific breakthroughs to improved crop yields, could at times benefit from more strategic relocation. Often they are in certain areas due to historical, financial or political reasons, not because of current practical needs, Reynolds explained.

Climate change is expected to lead to overall warmer temperatures and increase the intensity of droughts, floods and storms, negatively affecting food security and livelihoods. Climate modelling indicates that sea levels will rise and patterns of flooding and drought will change due to glacial melt at high altitudes.

Higher temperatures will affect crop yields and erratic rainfall could affect both yields and quality. For poor people spending most of their income on food, related price hikes could make it much more difficult to cope.

“A more globally oriented, problem-solving research effort will increase the efficiency of global investment in agriculture and help ensure food security,” Reynolds said, adding that public-private partnerships could be harnessed to drive globally coordinated research.

Article Disclaimer: This article was published by the CGIAR and retrieved on 07/28/2017 and posted here for information and educational purposes only. The views and contents of the article remain those of the authors. We will not be held accountable for the reliability and accuracy of the materials. If you need additional information on the published contents and materials, please contact the original authors and publisher. Please cite the authors, original source, and INDESEEM accordingly.


Sustainable agriculture for healthy forests


Farmers are beginning to transform agriculture in Mexico’s Yucatán peninsula through techniques that allow them to grow more on less land, reducing deforestation and greenhouse gas emissions. Above, slash and burn agriculture (right) compared to a non-burn strategy in a milpa system. Photo: J. Van Loon/CIMMYT

June 5, 2017

TEXCOCO, Mexico (CIMMYT) –  Farmers in Mexico’s ecologically-fragile Yucatán Peninsula are beginning to adopt innovative practices to manage traditional mixed-cropping systems called “milpas” that can slow or even stop deforestation and soil degradation.

Agriculture is the second-largest emitter of global greenhouse gas emissions and largest driver of deforestation, making the sector one of the top contributors to climate change and biodiversity loss.

Fifteen percent of global emissions is due mostly to agricultural expansion into tropical forests. Rising populations and changes in dietary preferences for more energy intense foods, like beef and soybean, are expected to boost agricultural emissions a further 15 percent by 2030.

Agricultural expansion and resulting deforestation of tropical areas also threaten more than half of all the world’s plant and animal species, contributing significantly to what many scientists say is Earth’s sixth mass extinction.

“Sustainable agriculture can bring large benefits to tropical areas by optimizing land use while improving farm management and techniques for farmers,” said Jelle Van Loon, a mechanization expert at the International Maize and Wheat Improvement Center (CIMMYT) who is working with farming communities in Mexico’s Yucatán Peninsula – an area compromising much of the largest remaining tropical rainforest in the Americas after the Amazon.

Nearly 80 percent of vegetation has been deforested or degraded in the peninsula, with more than 80,000 hectares being cut down annually.

“Agriculture in the Yucatán Peninsula is extremely diverse – there’s everything from industrial farms that operate around forest areas to small community farmers practicing the traditional milpa system in the interior,” said Van Loon.

Milpa farming – a traditional mixed cropping system in which maize, beans, and squash are grown – contributes to about 16 percent of deforestation in the region, and is typically practiced by subsistence farmers through slash and burn agriculture.

Milpa systems vary across communities in the region,” said Van Loon. “Sometimes plots are burned, farmed and left within two to three years for a new plot, and others are more permanent.”


A technician learns how to operate a two-wheeled tractor. Technicians working with CIMMYT will perform field trials evaluating the efficiency of equipment like this in their work areas. Photo: J. Van Loon/CIMMYT

Van Loon is working with a team of CIMMYT scientists and other partners in the region to see how farmers can apply sustainable technologies and practices across the peninsula’s milpa systems, as well as large-scale mechanized farms that operate in the area.
“It’s extremely important that the unique circumstances of each community are taken into account when new technologies are being promoted,” said Van Loon, citing that many programs exist to support local communities, but is often challenging to organize support in an integrated fashion that’s adjusted to local conditions.

Milpa provides more than crops for food – the slash and burn system also provides game and timber for these communities, so there are many factors that need to be taken into account when we try and promote sustainable practices.”

Two years ago CIMMYT successfully trialed a sustainable agriculture initiative with farmers in Hopelchén, a small community in Campeche where indigenous and Mennonite farmers grow maize following traditional farming practices.

Decades of soil degradation had forced farmers to convert rainforest areas into growing fields to continue farming, but when the farmers adopted sustainable intensification methods such as minimal soil movement, surface cover of crop residues and crop rotations, they were able to achieve higher yields even after two months of drought.

The Hopelchén farmers prove the dual benefits of sustainable agriculture in forest areas – forests that would otherwise have been cut down for farmland are preserved, acting as a ‘carbon sink’ by absorbing carbon dioxide that would have been free in the atmosphere, further contributing to climate change. These practices also help farmers adapt to the effects of climate change, like drought and erratic rainfall.

“In order to get adoption right, we are really taking a system-wide approach,” said Van Loon. “We want to integrate mechanization, soil quality, planting density and other approaches like inter-planting with trees to improve biodiversity to get the most efficient system possible.” Van Loon will specifically work with communities to explore mechanization opportunities, from improved hand tools to lightweight motorized equipment like two-wheel tractors.

“The goal is to optimize the benefits from the land that farmers are working, find ways to reduce pressure on opening new land and as such slow the rate of deforestation, preserve biodiversity and provide farmers with techniques for improved and more sustainable practices,” said Van Loon. “Ultimately, we’d like to see these practices adopted across the peninsula.”

CIMMYT is leading sustainable intensification efforts in the Yucatan through the Sustainable Modernization of Traditional Agriculture (MasAgro) program, along with CitiBanamex, Fundación Haciendas del Mundo Maya, local partners, non-governmental organizations and the Mexican government.  


Article Disclaimer: This article was published by The CIMMYT – International Maize and Wheat Improvement Center and retrieved on 06/20/2017 and posted at INDESEEM for information and educational purposes only. The views and contents of the article remain those of the authors. We will not be held accountable for the reliability and accuracy of the materials. If you need additional information on the published contents and materials, please contact the original authors and publisher. Please cite the authors, original source, and INDESEEM accordingly.


Scaling up research for impact


Source: CIMMYT, 2017 – Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve. Photo: CIMMYT/P. Lowe

April 27, 2017

EL BATAN, Mexico (CIMMYT) – Agricultural innovations, like climate-resilient crops, sustainable land use practices, and farm mechanization options, can go a long way toward achieving several U.N. Sustainable Development Goals.

But ensuring research reaches a significant amount of farmers to have a widespread impact is challenging.

Projects, programs, and policies can often be like small pebbles thrown into a big pond. They are limited in scope, time bound and therefore might fail to have long lasting impact. Through well thought scaling up strategies, development practitioners expect to implement successful interventions and expand, adapt and sustain them in different ways over time for greater developmental impact.

“To have our knowledge and technologies positively impact the livelihoods of large numbers of farmers in maize and wheat-based systems is what matters most,” said Bruno Gérard, director of the Sustainable Intensification Program at the International Maize and Wheat Improvement Center (CIMMYT).

Understanding the needs and demands of our stakeholders is crucial in the design and implementation of a research portfolio, he added.

As part of a German Development Cooperation (GIZ) effort to aid the scaling up of agricultural innovations, Lennart Woltering recently joined CIMMYT’s Sustainable Intensification Program. With previous experience working in development in Africa and South Asia, Woltering will play a key role in linking CIMMYT’s research to specific development needs, increasing its relevance and impact.

There is no blueprint for scaling, it depends on the institutional and socio-economic environments, which are very diverse in the various regions where CIMMYT works, said Gérard. He hopes Woltering’s experience with both development and research organizations will further contribute to link the right technical innovations with the people who need them.

Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve, Woltering said. Understanding what the drivers are that make the widespread adoption happen is critical.

“We do this by making sure scaling processes are an integral part of innovation systems. It is important to understand how conducive environments for scaling can be facilitated and how far we can realistically go,” he added.

Woltering will work to provide a coherent approach to scaling that can be used across the program’s projects, said Gérard.

To see real impact from research, initiatives must move beyond the boundaries of a single organization, Woltering said. New forms of collaboration across different sectors and the opening of new communication channels to share lessons of success when scaling should emerge.

Woltering will develop scaling strategies to facilitate the adoption of sustainable intensification options such as conservation agriculture and water/nutrient efficient practices, and contribute to enhancing CIMMYT’s partnerships with public and private sectors.

Previously, Woltering worked as a civil engineer focusing on water management with the International Crops Research Institute for the Semi-Arid Tropics in Africa (ICRISAT), then later moved on to work for a consulting development firm in Germany.  His experience will allow him to better articulate development needs with CIMMYT’s research, increasing the relevance and impact of the organization’s work.

Woltering is one of five experts working at CIMMYT as part of the GIZ-sponsored CIM Integrated Experts program. The CIM program aims to strategically place managers and technical experts in public and private organizations in the developing world to pass on their professional knowledge and contribute to capacity building.

Article Disclaimer: This article was published by the CIMMYT 04/27/2017 and retrieved on 05/03/2017 and posted at INDESEEM for information and educational purposes only. The views and contents of the article remain those of the authors. We will not be held accountable for the reliability and accuracy of the materials. If you need additional information on the published contents and materials, please contact the original authors and publisher. Please cite the authors, original source, and INDESEEM accordingly.


Breakthroughs in agriculture for action on climate change

Achieving sustainable development with climate-smart agriculture


Source: CGIAR, 2017. Farmers in Lushoto, in the Tanga region of Tanzania, are working with researchers to test different forage varieties like Brachiaria for yield and drought resilience. Credit: Georgina Smith / CIAT

The facts are startling. More than 2 billion people (CDC, 2015) worldwide suffer from micronutrient deficiency – 795 million (FAO, 2015) of whom are undernourished. The challenge to nutritiously and securely feed the growing population is further exacerbated by climate change which has led to extreme weather patterns and decreasing crop yields. With more than 10% of the world’s population living on less than US$1.90 per day (World Bank, 2016), the imperative to transform food systems in a way that simultaneously improves lives, livelihoods and the condition of natural resources is clear.

Climate change presents a formidable challenge as one of the biggest constraints to improving food systems, food security and poverty alleviation around the world, especially for the world’s most vulnerable people. The impacts of climate change and poverty are closely interconnected (Bager, CCAFS) as climate change impacts land availability, rainfall, and disease. With poor people disproportionately dependent on rainfed agriculture for their livelihoods, these communities are thus especially vulnerable to the impacts of climate change. The increasing frequency and intensity of climatic shocks impinges on their ability to sell an agricultural surplus, meaning less reinvestment in their farms and other livelihood activities, and less ability to purchase a nourishing diet.

The breakthrough Paris Climate Agreement of 2015, while far from perfect, represented an historic and ambitious new phase for climate action, and opened a door for the agricultural sector to take a leading role.

“We recognize that the agricultural sector has a key role to play in increasing resilience to climate shocks. Food security, food production, human rights, gender, ecosystems and biodiversity were all explicitly recognized in the Paris agreement and these are issues at the core of our work,” according to Elwyn Grainger-Jones, Executive Director of the CGIAR System Organization.

Across Africa, Asia and Latin America, CGIAR and its partners are developing climate-smart technologies to help farmers adapt to climate change as well as mitigate agriculture’s contribution to climate change.  The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) brings together the expertise in agricultural, environmental and social sciences to identify and address this nexus between agriculture and climate change. Innovations such as drought tolerant crops, agricultural insurance schemes and management practices for reducing greenhouse gas emissions are just a few of the technologies being developed by CGIAR.

In Africa, researchers from the International Maize and Wheat Improvement Center (CIMMYT) are working on drought tolerant maize which offers African farmers significant benefits, producing up to 30% more grain than conventional varieties under drought. Through beneficial partnerships with governments, private sector and local NGO’s, researchers have fast-tracked varietal releases and fostered competitive seed markets, allowing for widespread access to quality seed at an affordable price.

Ruth Kamula, a community-based seed producer in Kiboko, Kenya, planted KDV-1, a drought tolerant (DT) seed maize variety developed with the Kenya Agricultural Research Institute (KARI) as part of CIMMYT's Drought Tolerant Maize for Africa (DTMA) project. Credit: Anne Wangalachi/CIMMYT.
Ruth Kamula, a community-based seed producer in Kiboko, Kenya, planted KDV-1, a drought tolerant (DT) seed maize variety developed with the Kenya Agricultural Research Institute (KARI) as part of CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. Credit: Anne Wangalachi/CIMMYT.

“A large percentage of resource-poor farmers and consumers live in tropical environments, which are most vulnerable to climate change. By providing research-based knowledge and tools, CGIAR helps farmers adapt, bringing food security and prosperity to these areas,” says Martin Kropff, Director General, CIMMYT and CGIAR System Organization Board Chair. “CGIAR-led research on drought tolerant maize has helped more than 5 million households in 13 countries become more resilient to climate change.”

In Vietnam, Bangladesh and the Philippines, researchers from the International Rice Research Institute (IRRI) are developing rice management techniques, known as alternate wetting and drying, in irrigated lowland areas which could save water and reduce greenhouse gas  emissions while maintaining yields.

To ensure that agricultural innovation is developed where needed, CGIAR is prioritizing responsive, farmer driven technologies, particularly in relation to climate-smart solutions.

In Senegal, CGIAR-led research on digital advisory and climate information services are reaching farmers with improved seasonal forecasts via radio and SMS – information that is helping farmers adapt to climate change and improve resilience to climate shocks.

In India, researchers from CCAFS are establishing well-designed agricultural insurance schemes which will enhance resilience to climatic shocks and help protect farmers during bad harvests. CCAFS is also working in partnership with the World Business Council for Sustainable Development (WBCSD) to help major agribusiness companies improve their ability to trace, measure and monitor climate-smart agriculture progress, among others, by developing science-based indicators.

“The challenge we now have is how to take these innovations to scale, reaching millions rather than thousands of farmers. This requires a transformation in the way we partner and deliver our science, as well as targeting and bundling together climate-smart agriculture innovations,” outlined Kropff.

“We recognize that responding effectively to the challenges of climate change hinges on dramatic changes in the way we work.” Continued Grainger-Jones. “We have a responsibility to foster paradigm shifts which can prepare us for the challenges we face.

Research led by the International Center for Tropical Agriculture (CIAT) is doing just that, testing the impact of feeding animals with climate-smart Brachiaria grass, of which some varieties can tolerate drought and waterlogging, while others have produced more and better forage.

At its core, CGIAR is committed to transforming agriculture and food systems that will enable the most vulnerable to better nourish their families and improve productivity and resilience.

“As the world’s largest agricultural research for development partnership, CGIAR is in a unique position to respond to the world’s most complex development challenges. We are committed to leading world class climate change science to increase resilience to sustain the planet’s fragile ecosystem,”  reflected Grainger-Jones.

Elwyn Grainger-Jones, CGIAR System Organization Executive Director and Martin Kropff, Director General of CIMMYT and Board Chair of CGIAR System Organization recently participated in the: Climate change research and partnerships for impact on food and nutritional security event during the opening of the new CGIAR Research Program on Climate Change and Food Security (CCAFS) office at Wageningen University in the Netherlands.

%d bloggers like this: